microglia_analyzer package
Subpackages
Submodules
- microglia_analyzer.custom_loss module
- microglia_analyzer.ma_worker module- MicrogliaAnalyzer- MicrogliaAnalyzer.analyze_graph()
- MicrogliaAnalyzer.as_tsv()
- MicrogliaAnalyzer.bindings_from_yolo()
- MicrogliaAnalyzer.bindings_to_yolo()
- MicrogliaAnalyzer.classify_microglia()
- MicrogliaAnalyzer.get_classification_version()
- MicrogliaAnalyzer.get_mask()
- MicrogliaAnalyzer.get_model_path()
- MicrogliaAnalyzer.get_segmentation_version()
- MicrogliaAnalyzer.reset_classification()
- MicrogliaAnalyzer.reset_segmentation()
- MicrogliaAnalyzer.segment_microglia()
- MicrogliaAnalyzer.set_calibration()
- MicrogliaAnalyzer.set_classification_model()
- MicrogliaAnalyzer.set_input_image()
- MicrogliaAnalyzer.set_min_surface()
- MicrogliaAnalyzer.set_proba_threshold()
- MicrogliaAnalyzer.set_segmentation_model()
- MicrogliaAnalyzer.set_working_directory()
 
 
- microglia_analyzer.qt_workers module- QtBatchRunners- QtBatchRunners.finished
- QtBatchRunners.interupt()
- QtBatchRunners.make_mosaic()
- QtBatchRunners.run()
- QtBatchRunners.to_kill
- QtBatchRunners.update
- QtBatchRunners.workflow()
- QtBatchRunners.write_classification()
- QtBatchRunners.write_csv()
- QtBatchRunners.write_mask()
- QtBatchRunners.write_skeleton()
- QtBatchRunners.write_tsv()
- QtBatchRunners.write_visual_check()
 
- QtClassifyMicroglia
- QtMeasureMicroglia
- QtSegmentMicroglia
- QtVersionableDL
 
- microglia_analyzer.rename-files module
- microglia_analyzer.unet_worker module
- microglia_analyzer.utils module
Module contents
- microglia_analyzer.TIFF_REGEX = re.compile('(.+)\\.tiff?', re.IGNORECASE)
- The networks used in this package (A 2D UNet and a YOLOv5) rely on images that have a pixel size of 0.325 µm. Images with a different pixel size will be resized to artificially have a pixel size of 0.325 µm. It is from these resized images that we will extract the patches.