microglia_analyzer package
Subpackages
Submodules
- microglia_analyzer.custom_loss module
- microglia_analyzer.ma_worker module
MicrogliaAnalyzer
MicrogliaAnalyzer.analyze_graph()
MicrogliaAnalyzer.as_tsv()
MicrogliaAnalyzer.bindings_from_yolo()
MicrogliaAnalyzer.bindings_to_yolo()
MicrogliaAnalyzer.classify_microglia()
MicrogliaAnalyzer.get_classification_version()
MicrogliaAnalyzer.get_mask()
MicrogliaAnalyzer.get_segmentation_version()
MicrogliaAnalyzer.reset_classification()
MicrogliaAnalyzer.reset_segmentation()
MicrogliaAnalyzer.segment_microglia()
MicrogliaAnalyzer.set_calibration()
MicrogliaAnalyzer.set_classification_model()
MicrogliaAnalyzer.set_input_image()
MicrogliaAnalyzer.set_min_surface()
MicrogliaAnalyzer.set_proba_threshold()
MicrogliaAnalyzer.set_segmentation_model()
MicrogliaAnalyzer.set_working_directory()
- microglia_analyzer.qt_workers module
QtBatchRunners
QtBatchRunners.finished
QtBatchRunners.interupt()
QtBatchRunners.run()
QtBatchRunners.to_kill
QtBatchRunners.update
QtBatchRunners.workflow()
QtBatchRunners.write_classification()
QtBatchRunners.write_csv()
QtBatchRunners.write_mask()
QtBatchRunners.write_skeleton()
QtBatchRunners.write_tsv()
QtBatchRunners.write_visual_check()
QtClassifyMicroglia
QtMeasureMicroglia
QtSegmentMicroglia
- microglia_analyzer.rename-files module
- microglia_analyzer.unet_worker module
- microglia_analyzer.utils module
Module contents
- microglia_analyzer.TIFF_REGEX = re.compile('(.+)\\.tiff?', re.IGNORECASE)
The networks used in this package (A 2D UNet and a YOLOv5) rely on images that have a pixel size of 0.325 µm. Images with a different pixel size will be resized to artificially have a pixel size of 0.325 µm. It is from these resized images that we will extract the patches.