microglia_analyzer.tiles.recalibrate module
- microglia_analyzer.tiles.recalibrate.get_net2ori_factor(output_px_size, output_unit)[source]
Get the scaling factor to convert the UNet pixel size (0.325 µm) to the output pixel size.
- Parameters:
output_px_size (float) – The pixel size of the output image.
output_unit (str) – The unit of the output pixel size.
- Returns:
The scaling factor to convert the UNet pixel size to the output pixel size.
- Return type:
float
- microglia_analyzer.tiles.recalibrate.get_ori2net_factor(input_px_size, input_unit)[source]
Get the scaling factor to convert the input pixel size to the UNet pixel size (0.325 µm).
- Parameters:
input_px_size (float) – The pixel size of the input image.
input_unit (str) – The unit of the input pixel size.
- Returns:
The scaling factor to convert the input pixel size to the UNet pixel size.
- Return type:
float
- microglia_analyzer.tiles.recalibrate.process_factor(input_px_size, input_unit, output_px_size, output_unit)[source]
Process the scaling factor to convert the input pixel size to the output pixel size.
- Parameters:
input_px_size (float) – The pixel size of the input image.
input_unit (str) – The unit of the input pixel size.
output_px_size (float) – The pixel size of the output image.
output_unit (str) – The unit of the output pixel size.
- Returns:
The scaling factor to convert the input pixel size to the output pixel size.
- Return type:
float
- microglia_analyzer.tiles.recalibrate.recalibrate_shape(input_shape, input_px_size, input_unit, output_px_size, output_unit)[source]
Takes the shape of an image and its calibration to process its shape with another calibration. The number of channels (C) is not modified, only the Y and X dimensions are recalibrated.
- Parameters:
input_shape (tuple) – The shape of the input image.
input_px_size (float) – The pixel size of the input image.
input_unit (str) – The unit of the input pixel size.
output_px_size (float) – The pixel size of the output image.
output_unit (str) – The unit of the output pixel size.
- Returns:
The recalibrated shape.
- Return type:
tuple
- class microglia_analyzer.tiles.recalibrate.scaling[source]
Bases:
object
- class from_calibration[source]
Bases:
object
- static net2ori(data, pixel_size, unit, inter=True)[source]
Scales an image having a pixel size of 0.325µm to the original pixel size. Made to convert the UNet’s output (“network”) to something having the original pixel size (“original”).
- Parameters:
data (np.array) – The image to scale, with a pixel size of 0.325µm.
pixel_size (float) – The target pixel size to reach with the scaling.
unit (str) – The unit of the pixel size.
inter (bool) – Whether to use interpolation or not. Defaults to True.
- Returns:
The scaled image with the target pixel size.
- Return type:
np.array
- static ori2net(data, pixel_size, unit, inter=True)[source]
Scales an image to simulate a pixel size of 0.325 µm. Made to convert an input image (“original”) to something that the UNet (“network”) can process.
- Parameters:
data (np.array) – The image to scale, with a pixel size that is not 0.325µm.
pixel_size (float) – The pixel size of the ‘data’ image.
unit (str) – The unit of the pixel size.
inter (bool) – Whether to use interpolation or not. Defaults to True.
- Returns:
The scaled image with a pixel size of 0.325µm.
- Return type:
np.array
- static from_shape(data, shape, inter=True)[source]
Scales an image to mimic a pixel size of 0.325 µm. Made to convert an input image (“original”) to something that the UNet (“network”) can process.
- Parameters:
data (np.array) – The image to scale, with a pixel size that is not 0.325µm.
shape (tuple) – The target shape to reach with the scaling.
inter (bool) – Whether to use interpolation or not. Defaults to True.
- Returns:
The scaled image with a pixel size of 0.325µm.
- Return type:
np.array